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and four terrain types with 40 subjects were anlyed, The first analysis (20

subjects) yielded a clear-cut tone and texture 40'7ýperception model] with a
multi-dimensional scaling technique. The second analysis (40 subjects),according
to a minimum stress criterion (free-running) ,yielded a less-interpretable
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-The man-machine Interaction pattern In these models reveal that the machine
classifier weighted the tone parameter heavier than the texture parameter by a
factor of 1.5, whereas the human subjects displayed interesting Individual
differences as to how they weighted these two dimensions.
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Comparative Evaluations of the RADC/Hsu Texture
Measurement System With Perceptual Analyses

A. INTRODUCTION

In a broad methodological framework, pattern recognition may be conceivedf of as using two highly integrated processesi namely, feature extraction and

classification. Such processes may be performed "manually" by the human observer,

and/or by automated operations. In the area of Image data processing, automated

methods have become increasingly Important since they are potentially capable

of more efficient mass data processing. On the other hand, the error-rate of
current automated methods Is still high when compared to human photo-interpre-

tattoo (on a more limited scale). Thus, efforts have been made in the pattern

recognition sciences to utilize human perceptual attributes (abilities) In

designing feature extractors and classifiers; e.g., Hsu's texture measure (1977),

and Mitchell's max-min featur6 descriptor (1977).

Under the sponsorship of USAr'/Rome Air Development Center (RADC), and based

upon his earlier study of visual iersus statistical discrimination of maps, Hsu

used a multivarlate normal model to develop a highly accurate texture measure

with 17-23 feature variables for automatic recognition of terrain types (Hsu,

1975, 1977). According to a stepwise discriminant analyst, almost all of these

feature variables contribute significantly to the discrimination power of the

Mahalanobts classifier. But not surprisingly, extracting about 20 feature

variables makes processing time enormous; for instance, it takes 90 minutes CPU

time to process a 256 x 256 pixel with FORTRAN programming language. Therefore,

there is a definite need to drastically reduce processing time %hile maintaining

the high level of accuracy in the decision map.
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In Phase II of the USAF/RADC project noted above, an effort has been made

to design a new classifier based on the stable distribution nodel instead of the

normal distribution model: thus, e.g., skewness parameters of the spectral/

texture data are Incorporated Into the classifier. In contrast to the 2-para-

meter (mean s variance) normal model, the stable distribution model uses four

basic parameters--location (comparable to mean), scale (comparable to variance),

stable Index, and symmetry parameter. In theory, this new classifier should

have more discrimination power than the one based on the normal model. Further-

more, the Increase in the classifier parameters could require fewer variables In

the feature extractor component of the pattern recognition system, and thus reduce

processing time. Indeed, preliminary experiments (based on five frames) have

Indicated that only three texture variables (and certainly no more than five)

are required In the new classifier to achieve the same performance obtained with

the old (normal model) classifier which required 17-23 texture variablesl The

three variables thus far implicated primarily are: average grey-level, first

neighbor contrast, and second neighbor contrast. Processing time is therefore

reduced to only 15-20 minutes CPU time (FORTRAN programming) for processins the

same 256 x 256 pixels. Thus, with appropriate programming procedures, the new

system could potentially provide the machine base for a real-time interactive

pattern recognition system.

Currently, Whitman Richards (of MIT) has been conducting texture perception

studies for the Air Force under the sponsorship of the Advanced Research Projects

Agency (cf., Richards, 1977). Richards has concluded that most uniform textures

can be simulated by three or four variables, provided that these variables con-

tain the basic elemental tokens of the graphic display. His approach to texture
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perception has employed a "generalized colorimetry" technique analogous to that

used so successfully in studying human color vision. The ability to create

texture metamers for humans by using 3-4 variables clearly suggests that a

considerable saving in communicatIng critical texture information can be achieved.

However, Richards' work has been based on the generation of randcm (or

quasi-random) dot patterns. Specifically, his results are derived by visually

matching a pattern of spatially distributed random dots created by three grey-

levels with one created by 63 grey levels. Such texture metamers can also be

achieved with three grating "primaries." In addition, using n-gram statistics to

provide statistical control of any adjacent point in a random-dot texture pattern,

Purks and Richards (1977) have shown that constraints imposed on span lengths

less than three--regulating grey levels and spatial frequency content--have the

most significant Influences on texture discrimination. Note that the modified

Hsu/RADC machine system can successfully employ texture variables defined by

average grey-level, first neighbor and second neighbor contrasts,

The work cited above, coupled with the prior and continuing efforts of

others (notably, cf: Campbell, 1974; Ginsberg, 1973; and Pollen and Tyler, 1974)

concerning psychological, psychophysical, physiological, and neurological techniques,

strongly suggest that the human visual perceptual system employs 3-4 "filters/

channels" in analyzing texture. However, this filtering process, as measured in

the simulated, random-dot environment, involves variables directly concerned with

degree of resolution rather than directly specifying potentially more substantive

Informational measures contained in texture patterns of two or more dissimilar

real-world scenes, such as vegetation vs. soil, etc. In machine image data

processing systems, resolution processes per se are a function of optical scanning

and digitization/generalization techniques.



On the other hand, our work to date provides empiricai evidence that a 3-4

texture variable discrimination system can be Implemented to solve the real-

world texture discrimination problem In an Image data processing environment

using a feature extractor coupled with a classifier based on non-linear

discriminant functions. In this context, such -a machine system will enable

us to quantitatively characterize and simultaneously manipulate the real-world

date which It employs; this Important fact will also enable us to directly and

quantitatively compare the machine system's performance with that of the human

visual system and should provide new Insights regarding texture/pattern

perception of real-world Images by both man and machine. Thus, our major

thrust In this regard will be to quantitatively characterize real-world image

Information employed, and assess and compare the effects of changes In that

Information on the pattern classifications produced by both the machine system

and human o0ervers.

From the brief review Just provided, It certainly appears that Important

convergences are emerging from the study of human visual perception and

machine-oriented image processing methods. The goal of this study is to

Investigate further the relationship between these two Information processing/

discrimination systems by means of a comparative analysis of the RADC/Hsu

texture measure/classifier using computer simulations and human perceptual

tests. It Is expected that the basis for a truly effective real-time, man-

machine Interactive procqssing system could be derived from such investigations.

8. COMPUTER SIMULATIONS OF TEXTURE PATTERNS WITH SELECTED VARIABLES

The goal of the following exper!hients is to determine how well the total

texture-tone Information of terrain patterns can be represented by the "essential
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variables" descriLe.l earlier from a generation of two dimensional patterns with

Monte Carlo techniques. The measurement for the distance between two spatial

patterns Is the Mahalanobis O2 derived from a multivariate discriminant analysis.

lHere o2 approaching zero means the two spatial patterns are essentially the same.

The "threshold po•Int" (02) determining if two patterns are statistically different

can also be obtained since the sampling distribution of D2 distances is essentially

a X2 -distribution.

Frcr performing the following experiments, we have selected fo,,r terrain

patterns from the RADC/GALA frame: Vegetation, Cultivated Field, Pavement and

Edge Pevement. Each pattern is composed of (15 x IS) picture elements (or

pixels).

(I) Experiment i: Uniform Patterns

Experiment I employed the follo'.c;• variables to generate two dimensional

spatial patterns:

Means Standard Deviations

Mean Density ,•;tandard Deviation of Density

1st Neighbor Contrast Standard Deviation of tst Neighbor

2nd Neighbor Contrast 'I
It is clear here, we would like to control the distribution of tone

(density) and Ist -,Ighbor contrast (texture) first, and let 2nd neighbur

contrast be controlled only by the mean. The following figure gives a comparison

between the original and the computer simulated patterns from experiment 1.

To assess the degree of similarity (or dissimilarity) between the original

pattern and the simulated patterns, discriminant analyses were performed to

determine the D2 distance lrm)ng these patterns. Table I gives the results.



FIGURE 1: Texture Patterns of Edge Pave
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i FIGURE; 2: Texture Patterns of Pave
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TABLE 1. D2 -Distances Among Textural Patterns From
Image and Simulations

0 2 Simulatifon
It,

. .- VEGN. CFL PAVE EDPV VEGN CF'LD PAVE EOPV.

VEGN 0 47.2 1043.4 235.0 0.1 45,9 1005.2 203.6

CFLD 603,.4 0 8661.9 1209.6 666,8 0,1 8268,1 1041,5
IMAGE

PAVE 327.1 202.3 0 106.7 334.3 203,8 0,1 126,6

EOPV 45.7 15.4 58.3 0 4.7.8 15.7 541.4 0.8

'III IV,
VEGN 0-10 .4 185.8 3115,6 532.2 0 181.3 3C01'.3 488.7

S A CFLO 592.5 0.1 88143.6 1114.2 656.0 0 81442,3 930,2

lTION PAVE 1265,5 726.7 0.5 476.5 1293.7 732.6 0 535.0

EDPV 43,9 12.3 77.0 0.3 46.1 12.5 72,2 0

QUAO. I Image against Image

II Image against simulation

III Simulation against Image

IV Simulation against simulation
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While Quad. I of Table 1 gives D2 distances among four terrain patterns

from the Image, Quad. IV Indicates the same statistics for simulated patterns,

Thus, the comparison between Image and simulation can be obtained D2 's In

Quad, I and III, specifically the figures In the principal diagonals. The

figures in Quads, II and III are not Identical (or symmetric) because separate

dispersion matrices of each training set Instead of a pooled dispersion matrix

for all training sets were used In the computation of D2 from the following

equation:

2* (v -AO Q71 (y

Y Is observed texture pattern

3± is centrold of a training set

QI Is the dispersion matrix related to.j.

-1 stands for Inverse of a matrix

stands for transpose of a matrix

This also explains the fact that D2 computed from A to 8 Is different from

D2 computed from B to A since the dispersion matrix of A Is different from that

of S.

The results Indicate that the simulated patterns are essentially the same as the

original Image patterns in this machine comparison, since none of the 02 -distance

exceed 1.0.

To verify the above conclusion, we have also computed the stable parameters

of both image and simulated patterns to determine the distributional characteristics

of the patterns (Table 2). The results Indicate that the distributional

characteristics between image and computer simulated patterns are essentially

I the same.
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(2) Experiment 2: Non-uniform Patterns

To create more texture Information In a given pattern, we intentionally

used a mixture of two terrain types to create a spatial pattern. Four such

patterns are:

(1) Soil + Pave

(2) Pave + Edgepave

(3) Vegetation + Cultivated Field

(4) Cultivated Field + 2nd Pave

We have also tried to simulate those patterns using the computer

simulation techniques described In Experiment 1. However, due to sharp, sudden

tonal differences at the edge zones between two terrain types, the simulated

patterns failed to converge, and therefore, "similar" simulation patterns cannot

be obtained.

(3) Experiment 3: Simulation by the use of Mean Density, Skewness and

2nd Neighbor Contrast

We mentioned earlier that skewness ranked high as a possible discriminator

of terrain type. Thus, In Experiment 3, we tried to see whether spatial patterns

can be simulated successfully using skewness In conjunction with other variables.

Specifically, these variables used for Experiment 3 are:

Mean Density

Ist Neighbor Contrast

2nd Neighbor Contrast

Skewness

Standard Deviation

Thus compared to Experiment 1, we replaced "standard deviation" of the

2nd neighbor contrast with skewness in Experiment 3. The results are given in

Table 3. From Table 3, we can immediately notice that the locations (means) of
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2nd neighbor contrast in PAVE and EDPV are completely difference between the

original image and simulated patterns. By examining the simulation processes,

we discovered that many variables are significantly affected by skewness;

therefore, It is very difficult to control this many variables simultaneously.

(4) Experiment 4: Computer Simulation With Variables: Mean Density,

Standard Deviation and Mean Deviation

Experiment 4 was Intended to test whether a given pattern can be

simulated successfully using "deviation from mean" parameters in conjunction

with mean density. The results are given In Table 4.

From the above four experiments, we can conclude that:

1) The result from Experiment 1 with S variables (mean density,

lst neighbor contrast, 2nd neighbor contrast, standard deviations of density

and Ist neighbor contrast) yielded the best result.

2) Skewness parameter Is very difficult to control in computer

simulations,

3) Standard deviation seems to be a useful parameter in describing

spatial patterns, as indicated from Experiment 4.

We also asked 40 human observers (see Section D, Experiments S and

6 below) to place the simulated patterns derived from Experiment I (above) with

their "nearest neighbors" among the actual Image representations of Cultivated
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Field, Vegetation, Edgepave, and Pavement, and then judge the difference between

these selected nearest neighbor pairs. Thirty-nine of the 40 subjects placed

the machine appropriate simulations with .heir image counterparts--the one

subject who "erred", placed the Edgepave simulation with the Pavement image,

and vice versa. Of course, all subjects agreed that differences among these

"nearest neighbor" pairs were still apparent, since the simulation technique

allowed random placement of "pixels" within the 15 x 15 patterns. Considerable

Individual differences were apparent in the subjects' judgments of how different

(on a 0-10 scale) these "nearest neighbors" were, The dimensions Involved

here Is undoubtedly one that might be called "structure" (as opposed to

"tone" and "texture"), and will be considered later In Sections D and E.
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C. TEXTURE PERCEPTION OF CHOROPLETH MAPS

The perception of visual texture, though poorly understood, has long been

recognized by aerial photo-interpreters and psychologists as an Important

characteristic for the Identification of objects and scenes (Avery, iý68; Gibson,

1950; Koffka, 1935; Reed, 1973). Recently, computer scientists, electrical

engineers, geographers and other scientists have vigorously engaged in physical/

mathematical texture analyses of images. However, as shown In the literature

reviewed by Rosenfeld (1975), Haralick (1975), Landgrebe (1978) and Hsu (1978),

the bulk of the studies have centered on the development of texture measurements

t for mathematical discrimination of patterns. Few studies have attempted to

relate these digitized Image measurements to the visual texture recognition

process (Mitchell, et al, 1977: Tamura, Mori and Yamawaki, 1978; Hsu, 1978; Hsu

and Burright, 1979), although efforts have been made regarding texture perception

by humans (Lipkin and Rosenfeld, 1970; Pickett, 1970; Ginsburg, 1973; Pollen and

Taylor, 1974; Prlbrum, 1974; Rosenfeld, 1975; Richards, 1978).

Using "random-dot" patterns, and a matching procedure analogous to that

employed In human colorlmetry, Richards (1978) has recently shown that visually

equivalent textures (metamers) can be achieved by appropriate manipulations of

a set of 3-5 "primaries." For Instance, he has shown that the texture of a

random-dot pattern with 63 greytone levels is not perceptually different from

that of a pattern consisting of only three greytone levels. Obviously, the

human visual system involves certain filtering processes. However, the

generalizability of Richards' results to real-world pattern recognition and

of machine texture analyses to human perception is poorly understood. This sec-

tion presents some of our initial attempts to address such questions more

directly. Specifically, we have compared human similarity/difference judgments

of textural patterns baseu on real-world Images with machine texture measurement



-17-

outcomes developed using local statistics from moving (3 x 3) and (5 x 5) pixel

windows as employed in the RADC/Hsu texture analysis (Hsu, 1978). Such comparisons

r Include the use of non-metric,multi-dimensional scaling techniques (Takane, Young,

and de Leeuw, 1977), which enable us to construct models for human and machine

processes using microtexturally common and specifiable image conditions,

A Short Review of "Perceptually-based" Texture Feature Extractors

Among the texture measures developed for Image processing by machine, a 0

few have been termed "perceptually-based"--but, for obvious reasons, such

terminology certainly should be considered debatable at present. This section

reviews briefly Mitchell/Myers/Boyne's Max-min Descriptor (1977), Tamura/Mori/

Yamawaki's texture feature extractor (1978), and the RADC/Hsu texture measure-

ment system (1978),

Based on Mitchell's earlier work (1976), Mitchell/Myers/Boyne published

their Max-min Descriptor In 1977. Their texture parameters were obtained from

the number of peaks (Max) and troughs (Min) along a scan line using several

thresholds; e.g., given three threshold settings, three parameters based on

the sum of peaks and troughs provided three texture measurements, This texture

descriptor has been considered perceptually-based becaust it was Inferred from

the psychophysical literature that the human visual system tends to respond to

local extremes. This texture feature extractor also has been tested against

Haralick's grey-tone co-occurrence method (1973), and shown to be equally

effective for machine discrimination of patterns; however, the Max-min Descriptor

Is computationally much simpler.

Unlike Mitchell/Myers/Boyne's Intuitive approach, Tamura/Mori/Yamawaki

(1978) attempted to develop a set of complicated texture meastirements from a

relatively large group of pixels (128 x 128) which were supposvdly visually
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identifiable texture features such as: coarseness, contrast, directionality,

line-likeness, regularity and roughness--a macro-texture approach. Human

experiments also were conducted with often used textural patterns produced in

Brodatz' (1977) photographic album of textures. The authors indicated that their

perceptually-based texture feature extractor did not perform well in similarity

Judgment tasks.

To Investigate the relationship between the human performance and a machine

solution regarding similarity judgments of texture patterns as revealed in

choropleth maps, Hsu (1974) devised a 10-variable texture measure coupled with

a normal model classifier to analyze differences (in terms of Mahalanobis 02)

among map surfaces. These variables were extracted from the wave-form parameters

of both x and y axis scan lines, and involved: (I) area above datum, 2) area

below datum, 3) sum of the peak positions from origin, 4) sum of contrast values

from peaks to troughs, and 5) sum of the numbur of peaks and troughs. Since a

very high coefficient of correlation (r a 0.97)existed between the distances

judged by human subjects and the machine solution (02), this ten variable system

was viewed as perceptually-based.

The RADC/Hsu Texture Feature Extractor/Classifier System

As reported in 1978, Hsu (under the sponsorship of U.S. Air Force/Rome

Air Development Center) developed a new texture measure with 17 and 23 variables

derived from a (3 x 3) and a (5 x 5) moving grid, respectively. The original

(Hsu, 1974) five wave-form parameters were included in this system, This texture

feature extractor has been shown to be highly effective; e.g,, in reference to

ground-truth information, a hit-rate of 85-90% has been obtained regarding land-

use analysis from digitized, panchromatic images (Hsu, 1977).

The major difference between the 10-variable wave-form system (Hsu, 1974)

and the 17-23 variable system (Hsu, 1978) is that the former was based on a
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concept of macro-texture analysis, whereas the latter is derived from a micro-

texture apprcach. That Is, the latter system uses a moving grid (3 x 3 or 5 x 5

pixels) where the center-point is treated as the control point representing

characteristics of the relatively small control (grid) area. With this control

point/control area concept we are able to generate a vector of texture variables

for a single pixel, thus allowing us to perform a pixel-by-pixel classification

task with black and white Image data. Indeed, we believe that machine similarity

measurements, especially if they are expected to relate generally to human

perception, should be made on micro-textural features instead of visually apparent

macro-textural features which already have been subjected to largely unknown

and labile Integrative processes (cf., Kolers, 1972).

Perceptual Analyses-of the RADC/Hsu Texture Measure

Experiment 1. To perform perceptual analyses with human subjects regarding

similarity judgments, four choropleth maps were made showing population density

patterns as scaled by four different class-interval systems (Maps 1-4). In the

first experiment, ten naive human observers (cartography students) were asked

to estimate the visual differences in all six of the possible double-map compari-

sons; e.g., Map 1 vs Map 2, Map I vs Map 3, etc. The allowable scale ranged

from 0 (no perceptual difference) to 10 ("extremely different"). Table 5

sunmnarizes the results in a symmetrical dissimilarity matrix of mean judged

differences on the 10-point scale--standard deviations are given in parenthesis.
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TABLE 5. Dissimilarity Matrix (Symmetrical) of Mean
(and Standard Deviation) Perceptual Judgments

Map 1 2 3 4

1 0 4.7 3,2 7.7
(1.6) (2.4) (2.2)

0 4.3 7.9
(0.i) (1.3)

30 6,0

(1.8)

'4 0

As indicated in Table 5, the Map I vs 4 dnd Map 2 vs 4 pairs were judged

most different. The map pair Judgea least aifferent, on average, was the Map 1

vs 3 comparison.

Such a perceptual analysis of these map-similarity Judgments is Indeed an

analog of a statistical classification logic utilizing a minimum distance criterion.

Thus, a direct comparison between this perceptual analysis and a statistical

discriminant analysis based on the machine feature extractor/classifier was

attempted. To provide data for such a comparative analysis, the statistical

distances between the same six pairs of maps were computed using the 10 wave-

form parameters as response variables, Here, the texture variables were obtained

from scan lines on both the x and y axes. The macro-texture of these four maps

were subsequently represented by four, 10 x 13 matrices, one for each map. The

numbers of scan lines correspond with the rows and columns of the choropleth maps.

Discriminant analysis Is precisely the statistical technique that can be

used to assess the distances among these data matrices, and to determine whether

the separation between two surfaces 's statistically significant (Morrison, 1O76).
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Table 6 shows results of this normal-model.machine solution In a symmetrical

Xt dissimilarity matrix analogous to the matrix of perceptual results given In

Table 5.

TABLE 6. D Distances Between Map Pairs--Normal
Model Machine Solution (macro-texture)

Map I 2 3 4

1 0 6.64* 1.05 13.45*

2 0 2.87 16.95*

3 0 12.84*

4 0

(*p 0.01 -- F 3.16, df - 10,25]

The degree of correspondence between the average human perceptual Judgments

and the statistical discriminant analysis of the machine data was assessed by

calculating a Pearson correlation coefficient. Using the data from Tables 5

and 6, the obtained coefficient Is very high Indeed (r - 0.95).

Et 2. Since we developed a texture feature extrector capable of

analyzing the micro-texture of Individual pixels using a (3 x 3) moving grid,

we proceeded to determine how closely this 17-variable system correlated with

human perceptual Judgments. In addition, we wanted to know whether we could

use only 3-5 of the 17 variables In this system to achieve a comparable level

of performance. While such a 3-5 variable system would obviously result In

reduced computer time (see below), it also Is interesting to recall that

RIchards (1978) has reported that 3-5 "primaries" can produce texture metangers

In visual matching of "random-dot" patterns by human observers.
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To compensate for the potential loss of power in the feature extractor by

using only 3-5 variables, and/or to better reflect the characteristics of the

distributions of digitized Image Information (cf., Hsu, 1978), we developed a

non-linear classifier based on the stable distribution model which is still

capable of ultimately employing the Mahalanobis D2 as a quantitative distance

measure (Hsu and Klimko, 1979), Compared with the normal distribution model,

the stable distribution has four (Instead of two) basic parameters, and Is

capable of handling both non-normal as well as normal distributions. Experiments

with this stable model classifier have shown that the needed number of texture

variables for a machine solution comparable to that obtained with the original,

17-variable normal model classifier Is typically drastically reduced to about 3:

e.g., stable distributions of the mean, first-neighbor contrast, and second-

neighbor contrast. As a result, the data processing time f'er the same number

of points (256 x 256) was reduced to 15 minutes from 90 minutes of CPU time

using standard FORTRAN,

To assess the degree of correspondence between the human visual system and

this newly developed machine processing system we replicated the perceptual test

discussed in Experiment I utilizing the same four choropleth maps, but 10 different,

naive observers (again, graduate and undergraduate Geography volunteers at SUNY-

Binghamton), The Judgments in replications I and 2 were quite comparable (r for

first and second replication means - 0.92), and we pooled the set of 20 human

observations to yield the mean (and standard deviation) results shown in Table 7,

which is directly comparable to Table 5.
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TABLE 7. A Symmetric Dissimilarity Matrix for Perceptual
Judgments Based on 20 Human Observers (0-10 Scale)

Map 1 2 3

1 0 4.72 2.98 7.30
(1.46) (.82) (1.83)

2 0 4.12 7.70
(1,68) (1.37)

3 0 6.68
(1.68)

4 0

Comparable to Experiment 1, we also computed the distance between map pairs

using the stable Mahalanobis c,'-sifer with only three, tone-texture variables:

mean density, 1st neighbor contrast and 2nd neighbor contrast. Since

Individual matrices, Instead of a pooled dispersion matrix, was utilized In the

analysis, the Mahalanobis D2 distances In the dissimilarity matrix are not

symmetric (see Table 8). The upper diagonal D2 values represent row to column

comparisons and the lower diagonal 02 values indicate column to row comparisons.

The differences may be analogous to influences of orientation on human Judgments,

but these matters deserve further study. In these studies, the maps were oriented

for human Judgments as they are presented on these pages. However, to correlate

this set of machine outcomes to the perceptually-judged scores, we Initially

employed the upper off-diagonal stable distribution solution. Other aspects of

the asymmetric machine solution pattern will be considered later.
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"TABLE 8, The Asymmetric Dissimilarity Matrix (D2) From the 3-Variable Feature
Extractor and Non-linear (Stable) Classifier Machine Solution

Hap 1 2 3 4

1 0 1.9 0.3 3.0

2 1.7 0 0.6 4.3

3 0.5 0.7 0 3.3

4 4.3 12.5 6.0 0.7

A product-moment correlation of r 0.96 was obtained using the upper

diagonal 02 values In Table 8 and the average of the 20 human Judgments

(Table 7). Using the normal distribution machine solution for these four

maps (Table 6), and the means of the 20 human judgments, the correlation Is

0.98. The rank order correlation between the normal distribution machine

solution and the human observations Is perfect, as Is the rank order correlation

between the upper and lower diagonal stable distribution solutions. In terms

of rank order, tr' normal solutions and the human Judgments are very closely

(but not perfectly) related to the upper and lower diagonal stable distribution

solutions. Clearly, the outcome of our 3-variable feature extractor/classifier

also Is highly correlated with human judgments, and provides another Indication

that our texture-tone machine analysis method may provide some insight Into the

Intricate relationships between purely machine-based and perceptually-based

pattern recognition systems.
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Experiment 3. (Free-run/Minimum Stress Model) In the next experiment, we

decided to further examine the relationship between the 20 human perceptual judgments

and the two machine solutions (normal and stable distribution models), and to

determine how the machine solutions relate to a two dimensional space derived by

the non-metric, multi-dimensional scaling method recently by the Psychometrics

Laboratory at the University of North Carolina (cf., Takane, Young and deLeeuw, 1977).

First, we converted the entire three sets of data (human, normal model and

upper-diagonal stable model) Into z-scores based on a common scale of 0-10 as

used by the human observers. This was accomplished directly for the Judgments

of each Individual human observer, and by considering the D (not D2) values of

each machine solution, and then assigning appropriate values relative to a

maximum 0 - 10. These standardized dissimilarity scores are presented In

Figure 3, with the x-coordlnate as map pairs and y-coordinate as the z-scores,

Standard errors for the mean human judgments ranged between 0.09 and 0.21 on

this z-scale. The similarities among configurations of these standardized

dissimilarity distances between map palis by the three solutions, as expected

by the correlations already reported, Is quite striking.

To determine a Framework In which the human and machine "Judgments" of

similarity among these map pairs might be viewed, we decided to use non-metric

scaling procedures (cf. Hake and Rodman, 1966). Employing the multi-dimensional

scaling technique developed by Takane, Young and de Leeuw (1977), we obtained a

two-dimensional model using the dissimilarity matrices generated by each of the I
20 human subjects, plus those obtained from four machine solutions defined by

the normal model as well as by the upper diagonal, lower diagonal, and upper

plus lower averages of the stable model.



FIGURE 3: Dissimilarity Patterns of Population Density
Maps: Human Subjects versus Machine Solutions
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FIGURE 4: A Two Dimensional Perception
Model With the Minimum
Stress Criterion (Maps) 2.0.
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The two dimensional model derived by this alternating least squares method

using the 24 dissimilarity matrices as defined above is presented in Figure 4.

Dimension I (the x-axis) orders our four map stimuli as follows: Map 4, Map I,

Map 3 and finally Map 2. Sirze Map 4 Is lightest, and the average greytone becomes

darker following the map order along this dimension, It seems reasonable, at

least tentatively, to label Dimension I as a "tone" dimension.

Dimension II (the y-axis) of the derived stimulus space orders our maps as:

Map 1, Mao 3, Map 4 and flnally Map 2. Since these maps were created from the

same data set by systematically varying the class-interval used, we are able

to describe the nature of each pattern quite accurately (cf. Hsu, 1974). For

Instance, Map I was produced by requiring that each class have the same areal

distribution (equal area system); therefore, among all four maps, Map 1 should

have the highest neighbor contrasts or the highest frequency of greytone changes

between neighboring cells. In this regard, Map 3 is almost the same as Map 1

since their class-interval systems vary only slightly. In contrast, Maps 2 and

4--at the "other end" of Dimension II re Maps I and 3--used class-interval

systems which necessarily resulted In greytone patterns which produce relatively

little contrast between and among neighboring cells. Thus, comparatively, the

near neighbor contrasts In Maps 2 and 4 are considerably less than those displayed

In Maps I and 3, and may be considered perceptually less "busy" or texturally

less complex. Dimension II might reasonably be considered a "texture" dimension.

However, It should be noted that It Is doubtful that texture can be fully described,

In general, along a single dimension (see above).



-32-

The individual differences scaling model employed enables us to examine

how each of the 24 dissimilarity matrices (20 human observers, plus 4 machine

solutions) weighted the importance of the two derived stimulus dimensions. All

24 of these weight vectors are plotted in Figure 5, with human observations

depicted by dots, and the four machine solutions identified appropriately; the

two coordinates represent the weights on Dimension I ("tone") and Dimension ii

("texture"), respectively. Table 9 lists furthermore R-squared values of each

Individual In relation to the derived stimulus-dimension model.

From Figure 5 and column I of Table 9, it can be noted that 60 percent of

the Individual decisions are distributed very nearly along an arc of radius 1.0

In this weighting space. Any point on such an arc represents a perfect fit to

the two dimensional "tone-texture" model derived; the further a point is from

this arc, the greater the stress (cf. Takane, Young and de Leeuw, 1977) of that

Individual's Judgment for the model. Clearly, there ard distinct Individual

differences of the welghtings in this model space: whereas 60% of the subjects

show very good fit, 15% show good fit, another 10 percent show moderate fit.

and the remaining 15 percent do not fit the model well at all, It is worthwhile

to note that all of the four machine solutions have a perfect fit. Interestingly,

35 percent of the human observations tended to weigh the "tone" dimension

somewhat more than the "texture" dimension; 40 percent of the subjects reverse

the pattern; 20% of the subjects weighted the tone dimension equal with the

texture dimension, and finally, 5% of the subjects used neither dimension In

the discrimination of map surfaces. Of the four machine solutions included in

the creation of the "tone-texture" model presented, only one solution (the

normal model) used the texture criterion more than the tone dimension, whereas

three of the stable distribution solutions primarily used the tone criterion

(Table 10, column 1).
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FIGURE 5: A Two Dimensional Fixed
Model With Computed
Tone-Texture Parameters 2.0
(Maps)
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TABLE 9. Individual Differences (Goodness-of-Fit)
in Relation to Two Models

Map 20 + 4 Map 20 + 4 Fixed

Column I: Model Determined by the Column I1: Model Fixed With Computed
Minimum Stress Criterion Feature Statistics Tone-

Texture Parameters
R2 R2

1. 0.831 I! 0.206 IV
2. 0.817 I! 0.457 IV
3. 0 IV 0 IV
4. 1.00 1 1.000 I
5. 0.41 IV 0,699 111
6. i.0o0o I 1.000 I
7. 0.999 I 0.922 1
8. 0.999 I 0.999 I
9. 0.690 111 1.000 I
10. 0.226 IV 0.526 IV
11. 0.877 1 0.983 I
12. 0.690 111 0.998 I
13. 1.000 I 0.986 I
14. 0.806 I 0.994 1
15. 1.000 I 0.994
16, 0.868 I 0.826 II
17. 0.809 II 0.457 IV
18. 0.945 I 0.994 I
19. 0.891 I 0.988 I20. 1.000 I 0.999 I

21.Normal 1.000 I Determined 1.000 I Fixed
22.UD STABLE 1.000 I I II 0.986 I I I
23.LD STABLE 1.000 I -0. - 1 .30 0.986 I 0.G -F.45
24,R STABLE 1.000 I 0.99 -1.10 0.986 I 0.65 -1.02

0.63 0.64 0.42 0.39
I: >0.85 -1.61 -0.83 -1.72 -0.83
I1: 0.84 - 0.71
II1: 0.70 0.50
IV: < 0.50

II

I,!
Ii
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TABLE 10. The Weighting Patterns: Tone
Versus Texture Criterion (Maps)

Column 1: Determined Column II: Fixed Model
____ _ Minimum Stress Model _

Computer Computer
20 Subjects Solution 20 Subjects 'Solutlon

1. Tone Oriented 7 (35*) 3 9 4

!2. Even Tone &
Texture 4 (20t) I

3. Texture Oriented 8 (40%) 1 9

4, Neither Tone nor
Texture 1 (5%)

Total 20 1 4 20 4

I I
Average Average

Tone: 0.66 Tone: ,700

Texture: 0.55: Texture: 0.29!

tI

I
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Of course, Ideally we would like to be able to establish a priori models

of stimulus dimensions based structly upon either human or machine solutions

alone, and then determine how tndividual results relate to such models. We

will discuss this approach in Experiment 4, In addition, the generality of our

findings must be more fully explored. For instance, the four maps employed

In these studies were created by varying class-intervals and providing each

stimulus with a total of seven greytone values. In Section 0 we will Investigate

patterns derived from real-world Images which necessarily have different levels

and numbers of levels of greytone values. Furthermore, an additional 40 human

observers will be examined to determine If and how different perceptual models

or dimensional weightings may appropridtely characterize different sub-populations

of subjects and/or viewing conditions.

Experiment 4 (Fixed Model). While the previous experiment (3) described

the Individual differences In relation to a two dimensional stimulus model

determined by the use f a minimum (over-all) stress criterion, In this experiment

(4) we will discuss the Individual responses in relation to a fixed tone-texture

model with parameters computered for the digitized Image data information,

Specifically, we used the overall average density of each map to quantify the

"tone" dimensions, and the average of the Ist neighbor and 2nd neighbor contrast

statistics to quantify the "texture" dimension.

The results of this analysis with 20 human subjects plus the same four

computer solutions used in experiment 3 are listed in Column 11 of both Table 9

and Table 10. The graphic presentations of this model and the individual

solutions with respect to te model are given in Figures 6 and 7 respectively.
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First of all, it should be pointed out that the minimum stress criterion

solution (Experiment 3) yielded almost the same stimulus dimension space as

specified by the fixed model with only a very slight difference in the position

of Map 1 on the tone dimension. This discrepancy is probably insignificant since

the apparent overall brightness of Maps 1, 2 and 3 is essentially the same,

The overall pattern of individual differences In map discrimination between

the minimum stress model and this fixed model are very similar (compare Column I

and Column II in Table 9 and Table 10). The results of Experiment 3 and Experiment 4

Imply that: (1) the Hsu texture measurement with parameters of the mean tone

and the 1st and 2nd neighbor contrasts is indeed perceptually-based, (2) the

human observers tended to use both the tone and texture dimensions in the

discrimination of patterns created by greytones, and (3) In general, the machine

solutions weighted the tone information much heavier than the texture Information,

whereas the humans weighted the tone dimension only slightly heavier than the

texture dimension (see Table 10, re the average weights).

D. TEXTURE PERCEPTION OF REAL-WORLD TERRAIN PATTERNS

In Section C, we described the perception of choropleth maps by human

subjects and Its relationship with machine solutions based on the RADC/Hsu

texture measurements. As described earlier these choropleth maps were created

from a common data set by varying the class-interval system; and therefore, the

textural patterns were derived from only the spatial distribution of tones.

In this section, we will discuss texture perception of image patterns

derived from real-world terrain patterns including vegetation, cultivated

fields, edgepave (asphalt), and pavement (concrete). Compared to the choropleth

maps, the textural patterns of terrain types are much more complicated since they
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involved simultaneously with contrasts in both tone and texture levels. For

Instance, the tone level of vegetation is much darker than that of pavement, and

furthermore, there Is texture complexity in both vegetation and pavement. These

patterns of terrain types are given in Figures 8, 9, and 10, showing the six

Image pairs used in our perceptual tests. The following sections describe our

analyses of texture perceptions with these terrain patterns. It should be noted

that the methodologies, including the derivation of visual dissimilarity scores

and stimulus dimension models for the following experiments are the same as those

used in previous experiments (3 and 4).

Experlment 5 (Free-run or Minimum Stress Model). In this analysis of the

texture perception of choropleth representations of terrain patterns, we used

40 subjects to determine the visual distances among the terrain Image pairs

(Figures 8, 9 and 10). Similar to the human Judgments versus the mach!ne

solution related to the perception of population maps (Figure 3), we plotted

the mean normalized z-scores of perceptual differences of 40 human observers

against the machine solution (D2 derived from the Hsu measurement with these

three tone-texture variables: mean density, Ist neighbor contrast and 2nd

neighbor contrast) in Figure II. Compared to Figure 3, Figure 11 expresses a

greater variation in the human judgments of differences in terrain patterns

than In perception of the maps; however, the general agreement among z-score

patterns still exists.

The two dimensional model derived by the '"free-running," minimum stress

criterion using the 40 dissimilarity matrices plus one machine solution (stable

model) Is presented in Figure 12. Dimension I (the x-axis) orders our terrain

types stimuli as foilows: Vegetation, Cultivated Field, Edgepave and Pavement.

This order clearly establishes a "tone" dimension.

izA
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FIGURE 11: Dissimilarity Patterns of Terrain Types:

Human Subjects Versus a Machine Solution
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FIGURE 12: A Two Dimensional
Perception Model With
The Minimum Stress
Criterion
(Terrain Patterns)
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Dimension II (the y-axis) of the stimulus space orders the terrain patterns

as: Edgepave, Vegetation, Pavement and then Cultivated Field, Without the

vegetation, this dimension would appear to be a "texture" dimension. With

vegetation, this dimension maybe representing a combined "texture plus structure"

dimensions; I.e., while pavement appears more texturally complex than vegetation,

vegetation maybe viewed as having more "character" than pavement In terms of a

"structural" dimension,

Individual differences in this model are shown in Column I of Table 11 and Figure 13

with respect to R2 values, In this context, 42,5 percent of the 40 observers

display a very good fit, 35 percent a good fit and the remainder (22.5 percent)

provide a poorer fit or no fit al all. The data in Column I of Table 12 show

further that most of the individuals (80 percent) weighted the tone dimension

most heavily In Judging the differences among these image pairs.

The machine solution in this model Indicates only a moderate degree of fit

with an R2 of 0.74. This Is understandable because this free-running model is

structured according to "tone" and "texture plus structure" dimensions fixed by

human judgments, whereas the machine solution was fixed purely on tone (brightness)

and texture (neighbor contrasts) dimensions without any "structure" parameters In

the feature extractor. Similar to the majority of the human observers, the

machine solution weights the tone dimension heavier than the other dimension.

Experiment 6 (Fixed Model), Since In Experiment 5, we were not able to

establish a clear-cut stimulus dimension for texture, we decided to fix the

model with the tone and texture parameters derived from the feature statistics

defined by digital information regarding the mean density and the neighbor

contrasts, This fixed model is given in Figure 14, using mean density as the

"tone" dimension, and the average of the 1st neighbor contrast and the 2nd neighbor

contrast as the "texture" dimension, just as in Experiment 4 with the population maps,
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The Individual differences scaling model employed then enab!ed us to examine

how each of the 40 subjects weighted the importance of these two fixed stimulus

dimensions. The results are given in Column II of Table 11 and Figure 14 showing: 52.5

percent of the subjects displaying a very good fit (R2 greater than 0.85), 7.5

percent with good fit (0.84 < R2 >0.71), 15 with moderate fit (0.70 < R2 > 0.51)

and 25 percent having either poor or no fit (R2 < 0.50). The Information in

Column II of Table 12 shows furthermore that: (I) only 52.5 percent (inste,,, of

80 percent In the minimum stress model) of the observers weighted the "tone"

dimension predominantly In judging differences In image pairs; (2) the texturej

Information defined by the average Ist and 2nd neighbor contrast statistics of

the Images was fairly heavily employed by 35 percent of the observers, and

(3) finally 12.5 percent of the subjects utilized neither of these statistically

defined feature dimensions of "tone" and "texture" in their dissimilarity judgments

S• of these image patterns. This individual differences pattern Is also shown In

Figure 15. Unlike the result In Experiment 5, the machine solution here shows a

perfect fit Into this fixed model with an R2 of 0.993. This is also understandable

because this model is fixed according to the computed tone and texture variables

of the feature extractor. The weighting factors show the machine solution

weighted heavier on the tnne dimension than the texture dimension by a factor

of 1.5.

E. CONCLUSIONS AND FURTHER CONSIOERATIONS

In our work on digital image processing, we have determined that the

essential Information for discriF.inating terrain patterns is contained in 3 to

5 tone-texture variables characterized by the mean density, neighbor contrasts

i•
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TABLE HI. Individual Differences (Goodness-of-Fit) in Relation to
Two Models of Stimulus Dimensions

Column 1: Model Determined With a Column I1: Model Fixed With Computered
Minimum Stress Criterion Tone and Texture Parameters

SR2 C lassif'ica.tion Code R2 Classification Code

1 0.07 iV 0.30 IV
2. 0.57 III 0.925 I
3II 0,950 I

4. 0.73 I 0.002 IV
5. 1.00 I 1,000 I
6. 1.00 1 0.89 I
7. 0.99 I 0.65 III
8. 0.73 II 0.99 I
9. 0.07 IV 0.93 I

10. 0.96 I 0.002 IV
11. 0.78 II 0.54 iII
12. 1.00 I 1.000 1
13. 1,00 1 1.000 I
14. 0,94 1 10.00 IV15. 1.00 1 1.000 1

16. 1.00 I 0.89 1
17. 0.08 IV 0.38 IV
18. 0.78 II 0.16 IV
19. 0 IV 0.94 I
20. 0.03 IV 0.94 I
21. 0.73 II 0.99 1
22. 0.78 II !0.56 III
23. 0.97 I 0.06 IV
24. 0.73 II 0.002 IV
25. 0.90 I ! 0.65
26. 1.00 I 1.00 1
27. 0.97 I 0.82 II
28. 0.73 II 0,99 I
29. 0.96 I O.5 IoI.
30. 0.73 II 0.99 I
31. 0.57 III 0.86 I
32. 1.00 I 1.00 I
33. 0.61 III 0.96 I
34. 0.79 II !0.72 II
35. 0.73 II 0.26 IV
36. 0.61 it 0.56 it
37. 0.73 0I 0.99
38. 0.96 1 0.002 IV
39. 1.00 I 0.82 II
40. 0.81 II 0.92 I
41. 0.73 •t0,99 1

""17(42.5T,)14(35%,) 400%O•) 5012.5%o) . .. 21(52.5%,) 3(7.,,-) ' (5%,) 10-(2510")

Classification Code (R2 ): Average Average
1: > o.85 0.74, 0.24 0.62, 0.39
I!: 0.71 - 0 .85
111- 0.51 - 0.70
IV-. <0.50
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TABLE 12. The Weighting Patterns Tone
Versus Texture Criterion

(Terrain Patterns)

Column I: Determined Minimum Column I1: Fixed Model
Stress Model

40 Subjects Cornuter 46 Subjects I Computer

(1) Tone Oriented 32 1 21 1

(2) Even Tone and
Texture/Structure 3 7

(3) Texture/Structure
Oriented 1 7

(4) Neither Tone nor I
Texture/Structure 4 5

II
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and skewness parameters derived from a (3 x 3) moving grid. The details of this

work has been reported in Hsu/Klimko (1979) under the sponsorship of U.S. Air

Force/Rome Air Development Center, Rome, New York.

While we were doing research for Rome Air Development Center, Whitman

Richards conducted texture perception studies for the Air Force Office of

Scientific Research and concluded that most uniform textures can be perceptually

matched (texture. metamers) using 3 to 5 variables (greytone levels or filter

channels).

These two analyses indicate that important convergences are emerging

from the study of human visual perceptive and machine-oriented image processing

methods regarding the quest for discovering the elementary building blocks of

image (texture) patterns.

The current project represents a further effort to determine the existence

of these 3 to 5 elementary variables for the discrimination of real-world terrain

patterns by human observers and automated machine classifier systems.

We have approached this research problem using several methodologies Including

computer simulations (Section B), perceptual tests and machine solutions of

choropleth maps (Section C), and perceptual tests and machine solutions using

choropleth representations of real-world terrain image patterns (Section D). The

results can be summarized as follows:

1. In terms of machine discriminations using the Mahalanobis D2 statistics,

statistically similar patterns of terrain types can be simulated using three

elementary tone-texture variables: mean brightness, 1st neighbor contrast and

second neighbor contrast. But differences between image and simulated pairs,

of course, are still perceived by human observers--such remaining differences

undoubtedly are related to "structural" considerations (see below). We also found

that variables are sometimes effective for terrain discrimination, but they are

very difficult to simulate with numerical methods.
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2. Using choropleth maps created from a common data set by varying the

class-interval systems for perceptual tests, we found that a two dimensional

"texture-tone perception model" quantifiable on the bases of digitized feature

statistics, could enable us to describe to a great extent the aspects of human

perceptual process In pattern recognition.

3. Using terrain Image patterns, additional perceptual tests and similar

methodologies, we found, not surprisingly, further evidence for a "structure"

dimension (see above) in addition to the tone and texture dimensions in the human

perceptual visual system. We are currently exploring ways to separate and fully

quantify this third, structural dimension; however, it should be noted that the

same two dimensional ("texture" and "tone") model, the dimensions of which are

fully quantifiable on the basis of digitized Hsu feature variables, can adequately

account for a sizable proportion of the human perceptual process as reflected in

pattern discrimination judgments.

4. Considering the weighting vectors of this two-dimensional ("tone/

texture") model, machine solutions were typically found to weight the tone

dimension heavier than the texture variable by a factor of about 1.5. In

contrast, although 75 percent of our human subjects fit very well into this

"tone-texture perception model." individual differences regarding the weighting

of the tone versus texture dimensions were strikingly apparent. This latter

point, of course, has Important Implications for predicting actual pattern

recognition/discrimination Judgments by individuals and this respect to training

programs, task specific problems, and the development of effectively interactive

man-machine system approaches to dealing with the extraction of meaningful and

important Infornx ion from remotely sensed, digitized "image" data.
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